Analisis Respons Tanah Di Permukaan Pada Beberapa Lokasi Pemboran Dangkal Stasion Gempa Bmkg
DOI:
https://doi.org/10.31815/jp.2017.12.45-57Kata Kunci:
Hazard gempa, respons tanah, spesifik situs, amplifikasi, spectrum responsAbstrak
Analisis hazard gempa untuk wilayah Indonesia sudah disusun dalam peraturan gempa Indonesia (SNI-1726-2012) untuk Peak Ground Acceleration (PGA) dan spektrum respons dibatuan dasar, sedangkan aplikasi untuk disain struktur harus dihitung dipermukaan dengan mempertimbangkanefek tanah lokal. Analisis respon spesifik site dapat dilakukan dengan menggunakan analisis perambatan gelombang dari batuan dasar ke permukaan berdasarkan input parameter tanah dan goyangan di batuan dasar. Pada penelitian ini dilakukan analisis respon spesifik situs pada empat lokasi yang telah diketahui kondisi tanahnya berdasarkan hasil uji pengeboran dan Standard Penetration Test (SPT) yaitu di Serang, Sukabumi, Cilacap, dan Wonogiri yaitu lokasi stasion seismograf milik Badan Meteorologi Klimatologi dan Geofisika (BMKG). Hasil analisis pada seluruh lokasi tersebut diperolehspektrum respons dipermukaan pada perioda 1,0 detik terjadi amplifikasi, sedangkan pada PGA dan spektrum respons 0,2 detik terjadi deamplifikasi. Bila dibandingkan dengan ASCE-07-10 untuk jenis tanah sedang (SD) memperlihatkan nilai amplifikasi hasil penelitian yang lebih rendah. Hal ini tentunya akan menjadi bahan kajian dan evaluasi lebih lanjut untuk kebutuhan praktis.
Â
Referensi
Abrahamson, N. A. 1998. Non-Stationary Spectral Matching Program RSPMATCH. PG&E Internal Report, February.
Aki, K. 1965. Maximum likelihood estimate of b in the formula log (N)=a - bM and its confidence limits, Bulletin of the Earthquake Research Institute. Tokyo University. (43): 237-239.
Aldiamar, F. 2007. Analisis Resiko Gempa dan Pembuatan Respons Spektra Disain Untuk Jembatan Suramadu, Tesis S-2 Program Studi Rekayasa Geoteknik, Institut Teknologi Bandung.
American Society of Civil Engineers (ASCE). (2010). Minimum Design Loads for Buildings and Other Structures, ASCE (7): 109-117.
Asrurifak M., Irsyam M., Budiono B., Triyoso W., Hendriyawan. 2010. Development of Spectral Hazard Map for Indonesia with a Return Period of 2500 Years using Probabilistic Method, J. Civil Eng. Dim. 12 (1): 52-62.
Atkinson, G., Boore, D. 1995. New Ground Motion Relations for Eastern North America, Bulletin of the Seismological Society of America. 85: 17– 30.
Atkinson, G.M. Boore D. M. 2003. Empirical ground motion relations for subduction zone earthquakes and their application to Cascadia and other regions, Bulletin of the Seismological Society of America. 93 (4): 1703-1729.
Badan Standardisasi Nasional. 2012. Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung Dan Non Gedung, SNI 1726 2012.
¬Bock, Y., Prawirodirdjo, L., Genrich, J.F., Stevens, C.W., McCaffrey, R., Subarya, C., Puntodewo, S.S.O., dan Calais, E. 2003. Crustal Motion in Indonesia from Global Positioning System Measurement, Jurnal of Geophysics Research 108 (B8): 67-88.
Boore, D.M. and Atkinson, G.M. 2008. Ground-motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-damped PSA at Spectral Periods between 0.01 s and 10.0 s: Earthquake Spectra 24 (1).
Campbell, K.W. and Bozorgnia, Y. 2008. Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5%-Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10.0 s. Earthquake Spectra. 24(1).
Chiou, B. and Youngs, R., 2008, NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra: Earthquake Spectra. 24 (1).
Engdahl, E. R., A. Villasenor, H. R. DeShon, and C. H. Thurber. 2007. Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatraâ€Andaman and 2005 Mw 8.6 Nias Island great earthquakes, Bulletin of the Seismological Society of America. 97: 43–61.
Frankel, A. 1995. Mapping seismic hazard in the Central and Eastern United States, Seis. Res. Letters. 66: 8–21.
Gardner, J.K. dan Knopoff, L. 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? : Bulletin of the Seismological Society of America. 64: 1363–1367.
Gutenberg, B. and Richter, C. 1944. Frequency of earhquakes in California, Bulletin of the Seismological Society of America. 34: 185–188.
Harmsen, S. 2007. USGS Software for Probabilistic Seismic Hazard Analysis (PSHA), Draft Document, (unpublished).
Imai, T., dan Tonouchi, K. 1982. Correlation of N-Value with S-Wave Velocity and Shear Modulus, Proceedings of the 2nd European Symposium on Penetration Testing. 67-72.
Irsyam M., Dangkua T D., Kusumastuti D., Kertapati, E. 2007. Methodology of site specific seismic hazard analysis for important civil structure, Journal Civil Engineering Dimension. 9(2): 103-112.
Irsyam M., Sengara, I.W., Widiyantoro, S., Natawijaya, D.H., Triyoso, W., Meilano, I., Kertapati, E., Aldiamar, F., Suhardjono, Asrurifak, M, Ridwan, M. 2010. Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia, Laporan Tim Revisi Peta Gempa Indonesia 2010. Puslitbang Permukiman.
Krammer, S.L. 1996. Geotechnical Earthquake Engineering, Prentice Hall, New Jersey.
McGuire, R.K. 1976. Fortran Computer Program For Seismic Risk Analysis, U.S. Geological Survey Open-File Report. 76-67.
Ohta Y and Goto N. 1978. Empirical shear wave velocity equations in terms of characteristics soil indexes. Earthquake Engineering and Structural Dynamics. 6: 167-187.
Risk Engineering. 2007. “Software for Eartquake groundmotion estimation, user manual, background and theories, attenuation functionâ€, US Geological Survey.
Youngs, R.R., Chiou, S.-J., Silva, W.J., Humphrey, J.R. 1997. "Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes," Seis. Res. Let.. 68(1): 58-73.
Zhao, X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H., Somerville, P. 2006. Attenuation Relations of Strong Motion in Japan using Site Classification Based on Predominant Period, Bulletin of the Seismological Society of America. 96: 898-913.