Karakterisasi Site di Lokasi Stasion Monitoring Gempa Pada Dugaan Jalur Sesar Baribis
DOI:
https://doi.org/10.31815/jp.2021.16.1-9Kata Kunci:
Pengujian tanah, karakterisasi site, amplifikasi, monitoring gempa, jalur sesarAbstrak
Merujuk pada beberapa publikasi sebelumnya dimana jalur sesar Baribis yang berasal dari kawasan Subang diduga masih menerus ke arah Barat mendekati kawasan Jakarta. Hal tersebut menjadi perhatian banyak ahli untuk melakukan kajian lebih detail karena dikhawatirkan akan berdampak pada beberapa kota besar di sekitarnya. Sebagai tahap awal studi adalah melakukan pemantauan kejadian gempa di sekitar dugaan jalur sesar dengan memasang seismograf untuk mengetahui aktivitas sesar. Bersamaan dengan pelaksanaan pembangunan stasiun pemantau gempa, kajian karakterisasi situs dilakukan pada setiap lokasi yaitu di Jatiluhur, Walahar, dan Cipamingkis dengan menggunakan metode Standar Penetration Test (SPT), Microtremor Array dan HVSR. Hasil uji lapangan untuk lokasi Jatiluhur diperoleh periode predominan (T) = 0,77 detik, Vs30 = 274,17 m/detik, kedalaman batuan dasar 276 m dan NSPT30 = 40,05, di Walahar T = 0,58 detik, Vs30 = 264,35 m/detik , kedalaman batuan dasar 305 m, NSPT30 = 15,14, sedangkan di Cipamingkis T = 0,37 detik, Vs30 = 269,16 m/detik, kedalaman batuan dasar 190 m, NSPT30 = 35,83. Berdasarkan hasil tersebut seluruh lokasi kajian dapat diklasifikasikan kedalam jenis tanah sedang (kelas SD). Hasil ini dapat digunakan sebagai referensi untuk berbagai keperluan, termasuk studi amplifikasi dan analisis bahaya seismik.
Referensi
[BSN] Badan Standar Nasional. 2019. “‘SNI -1726-2019: Perencanaan Ketahanan Gempa untuk Bangunan Rumah dan Gedung’.â€
[PuSGeN] Pusat Studi Gempa Nasional. 2017. “Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.â€
[Pusperkim] Puslitbang Perumahan dan Permukiman, Kementerian PUPR. 2019. “Pengkajian Keaktifan Sesar Baribis – Jakarta dan Interpretasi Jalur Penyebarannya, Laporan Teknis.,†2019.
Achdan, A., dan D. Sudana. 1992. “Peta Geologi Lembar Karawang.†Bandung: Direktorat Geologi Departemen Pertambangan dan Energi.
Chimoto, K., Hi. Yamanaka, S. Tsuno, H. Miyake, dan N. Yamada. 2016. “Estimation of Shallow S-wave Velocity Structure using Microtremor Array Exploration at Temporary Strong Motion observation Stations for Aftershocks of the 2016 Kumamoto Earthquake.†Earth, Planets and Space 68 (1): 1–10. https://doi.org/10.1186/s40623-016-0581-3.
Irsyam, M., A. Sahadewa, dan H. Daryanto. 2018. “Dinamika Tanah dan Fondasi Mesin.†ITB.
Kirar, B., B. K. Maheshwari, dan P. Muley. 2016. “Correlation Between Shear Wave Velocity (Vs) and SPT Resistance (N) for Roorkee Region.†International Journal of Geosynthetics and Ground Engineering 2 (1): 1–11. https://doi.org/10.1007/s40891-016-0047-5.
Koulali, A., S. McClusky, S. Susilo, Y. Leonard, P. Cummins, P. Tregoning, I. Meilano, J. Efendi, dan A. B. Wijanarto. 2017. “The Kinematics of Crustal Deformation in Java from GPS Observations: Implications for Fault Slip Partitioning.†Earth and Planetary Science Letters 458: 69–79. https://doi.org/10.1016/j.epsl.2016.10.039.
Nakahara, Hisashi. 2012. “Formulation of the Spatial Autocorrelation (SPAC) Method in Dissipative Media.†Geophysical Journal International 190 (3): 1777–83. https://doi.org/10.1111/j.1365-246X.2012.05591.x.
Nakamura, Yutaka. 2000. “Clear Identification of Fundamental Idea of Nakamura’s Technique and its Applications.†In Proceedings of the 12th world conference on …, Paper no. 2656. http://www.sdr.co.jp/papers/n_tech_and_application.pdf.
———. 2008. “On the H/V spectrum.†In The 14th World Conference on Earthquake Engineering, 1–10.
Nguyen, N., J. Griffin, A. Cipta, dan P.R Cummins. 2015. Indonesia’s Historical Earthquakes: Modelled Examples for Improving the National Hazard Map. Canberra: Geosicence Australia. https://doi.org/10.11636/record.2015.023.
Ohta, Y., dan N. Goto. 1978. “Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes.†Earthquake Engineering & Structural Dynamics 6 (2): 167–87. https://doi.org/10.1002/eqe.4290060205.
Okada, Hiroshi. 2006. “Theory of Efficient Array Observations of Microtremors with Special Reference to the SPAC Method.†Exploration Geophysics 37 (1): 73–85. https://doi.org/10.1071/EG06073.
Pramatadie, A. M., H. Yamanaka, K. Chimoto, Afnimar, K. Koketsu, Mi. Sakaue, H. Miyake, I. W. Sengara, dan I.A. Sadisun. 2017. “Microtremor Exploration for Shallow S-Wave Velocity Structure in Bandung Basin, Indonesia.†Exploration Geophysics 48 (4): 401–12. https://doi.org/10.1071/EG16043.
Ridwan, M., P. R. Cummins, S. Widiyantoro, dan M. Irsyam. 2019. “Site Characterization using Microtremor Array and Seismic Hazard Assessment for Jakarta, Indonesia.†Bulletin of the Seismological Society of America 109 (6): 2644–57. https://doi.org/10.1785/0120190040.
Simandjuntak, T. O., dan A. J. Barber. 1996. “Contrasting Tectonic Styles in the Neogene Orogenic Belts of Indonesia.†Geological Society Special Publication 106 (106): 185–201. https://doi.org/10.1144/GSL.SP.1996.106.01.12.
Sujatmiko. 1972. Peta Geologi Lembar Cianjur. Pusat penelitian dan Pengembangan Geologi Departemen Pertambangan dan Energi.
Thokchom, S., B. K. Rastogi, N. N. Dogra, V. Pancholi, B. Sairam, F. Bhattacharya, dan V. Patel. 2017. “Empirical Correlation of SPT Blow Counts Versus Shear Wave Velocity for Different Types of Soils in Dholera, Western India.†Natural Hazards 86 (3): 1291–1306. https://doi.org/10.1007/s11069-017-2744-3.
Xing, Z., dan A. Mazzotti. 2019. “Two-grid Full-Waveform Rayleigh-Wave Inversion via a Genetic Algorithm - Part 1: Method and Synthetic Examples.†Geophysics 84 (5): R805–14. https://doi.org/10.1190/GEO2018-0799.1.
Yamanaka, H., dan H. Ishida. 1996. “Application of Genetic Algorithms to an Inversion of Surface-Wave Dispersion Data.†Bulletin of the Seismological Society of America 86 (2): 436–44.
Koulali, A., S. Mc Clusky, S. Susilo, Y. Leonard, P. Cummins, P. Tregoning, I. Meilano, J. Efendi, A. B. Wijanarto. 2017. The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters 458, 69–79.
Katz, L. J. and R. S. Bellon (1978). Microtremor site analysis study at Beatty, Nevada, Bull. Seism. Soc. Am. 68, 757-765
Nakamura, Y. 1989. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institute (RTRI), Vol. 30, No.1.
Nakamura, Y. 2008. On the H/V Spectrum, Proceedings of 14th World Confference Earthquake Engineering (WWCE), October 12-17, 2008, Beijing, China.
Nguyen, N., J. Griffin, A. Cipta, and P. Cummins. 2015. Indonesia’s Historical Earthquakes modelled examples for improving the national hazard map. Geoscience Australia Record 2015. 23, Canberra
Okada, H. 1998. Microtremors as an Exploration method, Geo¬exploration Handbook. Society of the Exploration Geophysicists of Japan, 2.
Okada, H. 2003. The microtremors survey method, Geophysical Monograph Series, 12.
(Pusperkim) Puslitbang Perumahan dan Permukiman, Kementerian PUPR. 2019. Pengkajian Keaktifan Sesar Baribis – Jakarta dan Interpretasi Jalur Penyebarannya, Laporan Teknis.
(PuSGeN) Pusat Studi Gempa Nasional. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.
Ridwan, M., S. Widiyantoro, M. Irsyam, Afnimar, and H. Yamanaka (2016). Development of an engineering bedrock map beneath Jakarta based on microtremor array measurements, Geol. Soc. London Spec. Publ. 441(1),153, http://doi.org/10.1144/SP441.7.
Simandjuntak, T. O. and A. J. Barber (1996). Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. Geol. Soc., London, Special Publications 106(1), 185–201
(BSN) Badan Standar Nasional. 2019. “SNI-1726-2019: Perencanaan Ketahanan Gempa untuk Bangunan Rumah dan Gedungâ€.
Sykora, D. W. & Stokoe, K. H. 1983. Correlation of in situ measurement in sands of shear wave velocity, soil characteristics, and site conditions, Geotechnical Engineering Report GR83-33, The University of Texas at Austin, 484 pages.
Sujatmiko, 1972, Peta Geologi Lembar Cianjur, Pusat penelitian dan Pengembangan Geologi, Departemen Pertambangan dan Energy.