TANTANGAN PENGUBAHSUAIAN (*RETROFITTING*) GEDUNG CIPTA KARYA JAWA TIMUR MENJADI BANGUNAN GEDUNG HIJAU

Challenges of Retrofitting the Building of Cipta Karya Jawa Timur into a Green Building

Diah Kusumaningrum,1* Totok Sulistiyanto²

¹Bidang Tata Bangunan dan Jasa Konstruksi Dinas Perumahan Rakyat, Kawasan Permukiman dan Cipta Karya Provinsi Jawa Timur, Jalan Gayung Kebonsari No. 169 Surabaya ²PT. Narama Mandiri, Konsultan Mekanikal-Elektrikal-Perpipaan, Energi dan *Green Building* Jalan Ir. h. Juanda 75 H-Ciputat Timur, Tangerang Selatan

*Surel: diahk.ppi2021@gmail.com

Diterima: 19 Mei 2025; Disetujui: 1 Oktober 2025

Abstrak

Pengubahsuaian (retrofitting) bangunan yang sudah ada (eksisting) menuju sertifikasi Bangunan Gedung Hijau (BGH) tahap pemanfaatan memerlukan pendekatan komprehensif yang mencakup aspek administratif, teknis, dan perilaku pengguna. Studi ini menganalisis kesiapan Gedung Cipta Karya Jawa Timur melalui metode studi kasus dengan pendekatan mixed-methods. Data diperoleh dari tinjauan dokumen, audit energi internal, simulasi teknis, dan survei persepsi pengguna terhadap 50-60 responden. Ditinjau dari administratif, gedung telah menunjuk manajer energi dan menyusun rencana retrofit, namun belum sepenuhnya memenuhi persyaratan dokumen legal bangunan seperti Persetujuan Bangunan Gedung (PBG), Sertifikat Laik Fungsi (SLF), dan dokumen persetujuan lingkungan, sebagai persyaratan sertifikasi BGH Tahap Pemanfaatan. Aspek teknis menunjukkan nilai OTTV sebesar 33,9 W/m² telah memenuhi batas SNI 6389:2020, dan simulasi cooling load menunjukkan potensi penurunan konsumsi energi sebesar ±25% dan emisi GRK ≥20%. Namun, audit internal dan persepsi pengguna mengindikasikan bahwa kenyamanan termal dan pencahayaan masih perlu ditingkatkan. Ditinjau dari perilaku, skor partisipasi pengguna tinggi (rata-rata >4 dari skala 5), menunjukkan kesiapan menjalankan efisiensi secara manual meski tanpa sistem otomatis. Temuan ini menegaskan bahwa keberhasilan retrofit BGH sangat bergantung pada kesiapan administratif, efisiensi teknis, serta keterlibatan pengguna secara aktif pasca-retrofit.

Kata Kunci: Pengubahsuaian, Bangunan Gedung Hijau, administrasi perizinan, efisiensi energi, perilaku pengguna.

Abstract

Retrofitting of existing buildings to achieve Green Building (BGH) certification at the operational stage requires a comprehensive approach involving administrative, technical, and behavioral aspects. This study examines the readiness of the Cipta Karya's Building in East Java through a mixed-methods case study. Data were collected through document reviews, internal energy audit, technical simulation, and a user perception survey of 50 to 60 respondents. Administratively, the building has appointed an energy manager and prepared a retrofit plan but has not yet fulfilled all legal documentation, such as Building Permit (PBG), Certificate of Building Functionality (SLF), and Environmental Permit, as required for BGH certification at the utilization stage. Technically, the OTTV value of 33.9 W/m^2 complies with SNI 6389:2020, and cooling load simulation results indicate a potential 25% reduction in energy use and \geq 20% in Green House Gas (GHG) emissions. However, internal energy audits and user feedback indicate suboptimal thermal and lighting comfort. Behaviorally, users show a high willingness to engage in manual efficiency (average score >4), despite the absence of automated systems. These findings emphasize that the success of BGH retrofitting depends not only on technical interventions but also on administrative compliance and sustained occupant engagement.

Keywords: Retrofitting, green building, permitting compliance, energy efficiency, occupant behavior.

ISSN: 1907 - 4352

E ISSN: 2339 - 2975

PENDAHULUAN

Sektor bangunan menyumbang sekitar 21% emisi GRK global atau 12 GtCO₂-eq pada 2019, terutama dari konsumsi listrik dan panas. Jika emisi tidak langsung diperhitungkan, kontribusinya naik menjadi 16–31%, menjadikan sektor ini prioritas utama efisiensi energi dan dekarbonisasi (*Intergovernmental Panel on Climate Change*, 2022; Xiang *et al.*, 2024).

Di Indonesia, efisiensi energi diperkuat melalui Peraturan Pemerintah (PP) Nomor 16 Tahun 2021 Pasal 222–226 yang mewajibkan penerapan Bangunan Gedung Hijau (BGH) pada gedung pemerintah ≥5.000 m². Komitmen ini sejalan dengan Rencana Pembangunan Jangka Panjang Nasional (RPJPN) 2025–2045 dan Rencana Pembangunan Jangka Menengah Nasional (RPJMN) 2025–2029 yang menargetkan penurunan intensitas emisi GRK hingga 93,5% menuju netzero emissions untuk mewujudkan Visi Indonesia Emas 2045 (BPIW, 2024).

Merujuk Permen Pekerjaan Umum dan Perumahan Rakyat (PUPR) Nomor 21 Tahun 2021, Pasal 12 ayat (6), kegiatan pengubah-suaian dipadankan dengan istilah pengubahsuaian, yaitu upaya penyesuaian kinerja bangunan gedung yang telah dimanfaatkan agar memenuhi persyaratan teknis bangunan, termasuk dalam rangka sertifikasi BGH. Kegiatan ini mencakup rehabilitasi, renovasi, atau adaptasi bangunan gedung yang sudah ada (eksisting) guna memastikan fungsionalitas dan kelayakan operasional.

Gedung Cipta Karya Provinsi Jawa Timur, dengan total luas lantai bangunan 3.982,53 m² dan dibangun pada 1980-an, menjadi studi kasus pengubah-suaian bangunan gedung eksisting menuju BGH tahap pemanfaatan melalui jalur pengubahsuaian. Intervensi meliputi sistem selubung bangunan, *Heating, Ventilation, and Air Conditioning (HVAC)* dan pencahayaan. Studi Ator et al. (2024) menekankan bahwa kombinasi strategi pasif dan aktif dapat meningkatkan kinerja energi secara signifikan. Namun hingga kini, belum ada gedung pemerintah yang tersertifikasi BGH tahap pemanfaatan melalui ubah suai menyeluruh.

Hambatan utama dalam pengubahsuaian bangunan eksisting menuju BGH mencakup keterbatasan anggaran, beban administratif, kurangnya pengetahuan atau pemahaman mengenai cara sertifikasi, serta minimnya studi teknis terapan di iklim tropis. Prasetyawan *et al.* (2023) menyoroti risiko ekonomi dan lemahnya insentif, sementara Cozza *et al.* (2021)

menggarisbawahi *performance gap* antara hasil simulasi dan performa aktual. Rendahnya persepsi

terhadap manfaat pengubah-suaian juga menjadi penghalang adopsi teknologi efisiensi (Bielig *et al.*, 2024).

Menurut World Economic Forum (WEF), sektor bangunan mengonsumsi 30% energi global dan memiliki potensi penghematan hingga 38% intensitas energi (World Economic Forum, 2024). Potensi ini menegaskan pentingnya optimalisasi pengubahsuaian pada bangunan eksisting, termasuk yang skala kecil, dalam mendukung target dekarbonisasi nasional.

Literatur terkini merekomendasikan pendekatan terpadu, termasuk optimasi intervensi (Zanetti et al., 2019), integrasi energi terbarukan menuju nearly Zero Energy Building (nZEB) (Brambilla et al., 2018), serta evaluasi berbasis life cycle assessment (Wang et al., 2022). Pendekatan occupant-centric juga semakin relevan, dengan indikator kenyamanan termal, kualitas udara, pencahayaan, dan akustik sebagai parameter utama (Sleiman et al., 2024; Maghsoudi Nia et al., 2024).

Namun, belum terdapat kajian yang menelaah keterkaitan antara strategi pengubahsuaian pasifaktif, pelibatan pengguna, dan tantangan administratif sertifikasi BGH tahap pemanfaatan pada bangunan eksisting berukuran <5.000 m² di iklim tropis.

Studi ini bertujuan untuk:

- Mengidentifikasi hambatan administratif, teknis, dan perilaku pengguna dalam proses sertifikasi BGH tahap pemanfaatan Gedung Cipta Karya melalui pengubahsuaian;
- 2. Menghitung *Overall Thermal Transfer Value(OTTV)* dan potensi penurunan emisi operasional melalui simulasi selubung dan sistem *HVAC*; serta
- 3. Merumuskan strategi *occupant-centric* untuk menjaga kinerja energi pasca-pengubahsuaian.

Lingkup studi mencakup bangunan kantor pemerintah seluas 3.982,53 m² dengan jam operasional 08.00-17.00 (Senin-Jumat) dan 0,04 tingkat okupansi orang/m², serta menggunakan tarif listrik Perusahaan Listrik Negara(PLN) 2024. Kondisi awal mencakup selubung bangunan dari Aluminium Composite kaca, Panel(ACP) dan serta sistem Conditioner (AC) split dengan set-point 16-18 °C. Target simulasi adalah suhu operasional 24°C dan Coefficient of Performance (COP) ≥ 4 .

METODE PENELITIAN

Studi ini menggunakan desain *mixed-methods* sequential exploratory (Creswell, 2018), dengan dua tahap:

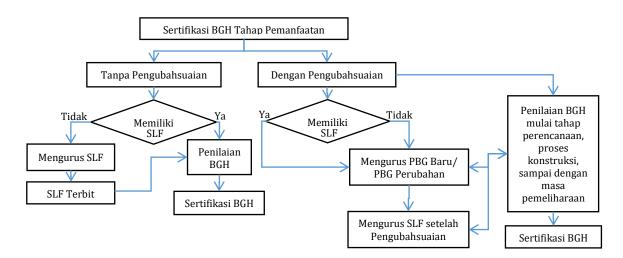
- 1. Tahap kualitatif, untuk mengidentifikasi hambatan administratif, teknis, dan perilaku pengguna melalui wawancara semi-terstruktur dan kuesioner terbuka;
- 2. Tahap kuantitatif, untuk mengoperasionalkan temuan kualitatif ke dalam parameter simulasi energi dan *occupant-centric Key Performance Indicator (KPIs)*.

Pengumpulan data dilakukan di Gedung Cipta Karya Provinsi Jawa Timur selama periode Tahun 2024. Sumber data utama meliputi dokumen administrasi dan teknis bangunan, observasi lapangan, pengukuran langsung, serta persepsi pengguna.

Studi dokumen mencakup sertifikat lahan, *layout plan*, denah lantai, gambar tampak bangunan, dokumen pemeliharaan dan perencanaan pengubah-suaian, tagihan listrik bulanan, data jumlah pegawai, inventarisasi peralatan listrik, serta hasil audit energi internal. Data ini digunakan sebagai input simulasi teknisdan pelaporan manajemen energi melalui aplikasi Pelaporan Online Manajemen Energi (POME) Kementerian Energi dan Sumber Daya Mineral (ESDM), serta verifikasi kondisi eksisting.

Observasi fisik dilakukan untuk mengonfirmasi kondisi selubung bangunan, pencahayaan alami, dan sistem pengkondisian udara (AC *split*). Pengukuran teknis dilakukan menggunakan *lux meter* untuk menilai intensitas pencahayaan. Data okupansi diperoleh melalui observasi langsung dan validasi terhadap data kepegawaian.

Aspek persepsi kenyamanan dieksplorasi melalui wawancara semi-terstruktur terhadap lima informan kunci (pengelola fasilitas, teknisi, dan perwakilan pengguna), serta kuesioner skala Likert


dan pertanyaan terbuka kepada 50 pengguna. Aspek yang ditelusuri mencakup preferensi terhadap suhu ruang, pencahayaan, kualitas udara, dan kebisingan. Aspek perilaku pengguna dikaji melalui kuesioner serupa terhadap 60 responden, untuk mengidentifikasi tingkat partisipasi dan hambatan dalam penerapan perilaku ramah lingkungan serta hemat energi di lingkungan kantor. Pendekatan ini menggabungkan metode kuantitatif dan kualitatif dalam satu rangkaian analisis untuk memperoleh pemahaman yang komprehensif terhadap kondisi eksisting dan potensi optimalisasi bangunan. Data kualitatif dianalisis secara tematik untuk mengidentifikasi hambatan administratif dan perilaku, Data kuantitatif digunakan sebagai input dan kalibrasi simulasi energi, termasuk perhitungan OTTV dan estimasi penurunan emisi operasional.

HASIL DAN PEMBAHASAN

Persyaratan Sertifikasi

Pasal 34 Ayat 4 Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat RI Nomor 21 (2021) menyatakan bahwa bangunan gedung yang belum memiliki Sertifikat BGH pada tahap perencanaan teknis dan pelaksanaan konstruksi, harus sudah memiliki SLF dan memenuhi ketentuan standar teknis BGH untuk mendapatkan sertifikat dan plakat pada tahap pemanfaatan.

Proses sertifikasi BGH tahap pemanfaatan pada bangunan yang sudah ada dibedakan menjadi dua, yaitu tanpa pengubahsuaian dan dengan pengubahsuaian sebagaimana disajikan pada Gambar 1.

Gambar 1 Alur Proses Sertifikasi BGH Tahap Pemanfaatan Bangunan yang Sudah Ada.

Tabel 1 Daftar Dokumen Persyaratan Sertifikasi BGH Tahap Pemanfaatan pada Bangunan Eksisting.

Nama Dokumen	Fungsi	Dasar Regulasi
Surat Keterangan Rencana Kota (SKRK)	Menjamin kesesuaian lokasi dengan Rencana Tata Ruang dan Rencana Tata Bangunan	PP No. 16 Tahun 2021
Rekomendasi Arahan Sistem Drainase	Mengendalikan beban drainase dan air limbah dari bangunan eksisting	Pemerintah Daerah/Kota
Standar Teknis Penanganan Dampak Lalu Lintas	Dibutuhkan untuk bangunan 1.000–4.000 m² (bangkitan lalu lintas rendah)	Permenhub RI No. PM 17 Tahun 2021 – Lampiran I
Dokumen Pengelolaan Lingkungan Hidup (DPLH)	Untuk bangunan <5.000 m² seperti Gedung Cipta Karya Jawa Timur (3.982.53 m²), meskipun termasuk skala SPPL, tetap wajib menyusun DPLH sebagai bentuk sanksi, karena belum memiliki dokumen lingkungan hidup sebelumnya. Sanksi tersebut setara UKL-UPL, yang terdiri dari: - Persetujuan Teknis Baku Mutu Air Limbah - Rincian Teknis Limbah B3	PP No. 22 Tahun 2021, Permen LH No. 14/2010, Permen LHK No. 4/2021
Perjanjian Kerja Sama Pengelolaan Limbah Cair Domestik	Untuk melakukan penyedotan dan pengolahan limbah tinja / cair domestik, sebagai pelengkap persetujuan teknis baku mutu air limbah	Peraturan Daerah Kota Surabaya No. 7 Tahun 2023 - Tarif Penyedotan dan Pengolahan Air Limbah Domestik oleh Armada Pemerintah Kota Surabaya
Gambar Bangunan Eksisting / Gambar Perencanaan Pengubahsuaian	Dokumen teknis: struktur, arsitektur, MEP, layout, denah, tampak, potongan, perhitungan struktur, hasil penyelidikan tanah, gambar terbangun, hasil uji mutu dan test commissioning diperlukan untuk pengajuan PBG/SLF	PP No. 16 Tahun 2021 – Persyaratan Teknis Bangunan Gedung Eksisting

Gedung Cipta Karya Jawa Timur akan melakukan sertifikasi BGH melalui proses jalur pengubahsuaian. Pada kondisi gedung yang tidak dilengkapi dengan Izin Mendirikan Bangunan (IMB), sekarang PBG, Dinas Cipta Karya Jawa Timur harus melengkapi dokumen persyaratan perizinan bangunan, mulai dari pengajuan Surat Keterangan Rencana Kota/Kabupaten (SKRK) dan dokumen persetujuan lingkungan, yang mencakup sistem drainase, penanganan dampak lalu lintas, persetujuan teknispemenuhan baku mutu air limbah, dan pengelolaan limbah bahan berbahaya dan beracun (B3). Hal ini agar PBG Gedung Cipta Karya dapat terbit, sebelum pengajuan SLF dan sertifikasi BGH setelah pengubahsuaian. Selain melengkapi dokumen persyaratan perizinan bangunan tersebut, Dinas Cipta Karya Jawa Timur juga harus menyusun dokumen penilaian kinerja BGH, mencakup tahap perencanaan, pelaksanaan pengubahsuaian hingga pemeliharaan, sesuai persyaratan pada Tabel 1.

Pemenuhan persyaratan sertifikasi BGH tahap pemanfaatan pada bangunan eksisting menghadapi sejumlah tantangan, baik dari sisi non teknis, teknis maupun koordinasi kelembagaan. Pertama, tantangan muncul dari sisi pembiayaan, khususnya terkait penyediaan anggaran untuk penggambaran ulang, penilaian keandalan

bangunan, perencanaan, pelaksanaan konstruksi, pengawasan, dan operasional kegiatan pengubahsuaian. Bangunan eksisting umumnya (studi kasus: Gedung Cipta Karya Jawa Timur) tidak memiliki dokumen teknis lengkap dan mutakhir, sehingga penggambaran ulang (as-built drawing) menjadi keharusan, sebelum proses pengajuan SLF atau desain ulang pengubahsuaian. Selain itu, peraturan mewajibkan evaluasi teknis terhadap struktur bangunan eksisting untuk keandalan pasca-pengubahsuaian, melalui jasa konsultan tersertifikasi dan pengujian material di lapangan. Biaya pengubahsuaian tidak hanya terbatas pada pembangunan fisik, tetapi juga mencakup tahap awal perencanaan dan pascakonstruksi, termasuk kebutuhan audit energi, penyesuaian sistem HVAC, serta evaluasi kinerja termal selubung bangunan. Selain itu, untuk mempertahankan kinerja energi bangunan pascapengubahsuaian, agar tetap efisien berkelanjutan pada masa operasionalnya, perlu disusun kebijakan dan strategi pelibatan peran pengguna bangunan, yang tentunya akan menambah beban anggaran nonfisik.

Kedua, tantangan penyusunan dokumen lingkungan hidup memerlukan koordinasi lintas sektor dan kolaborasi dengan pihak eksternal. Untuk menyusun dokumen standar teknis

penanganan dampak lalu lintas bagi bangunan dengan bangkitan lalu lintas rendah (luas 1.000-4.000 m²), diperlukan keterlibatan tenaga ahli transportasi bersertifikat dari Kementerian Perhubungan, serta rekomendasi teknis dari Dinas Perhubungan (Dishub) setempat, sesuai wilayah Kebutuhan kewenangannya. biaya penggunaan tenaga ahli dalam analisis lalu lintas, diperimbangkan dalam perencanaan oleh konsultan. Selain itu, pemenuhan dokumen pengelolaan air limbah dan drainase memerlukan arahan dari Dinas Sumber Daya Air dan Bina Marga (SDABM), serta verifikasi dari Dinas Lingkungan Hidup (DLH) untuk dokumen persetujuan teknis pemenuhan baku mutu air limbah dan rincian teknis pengelolaan limbah B3.

koordinasi Proses tersebut membutuhkan sinkronisasi jadwal, verifikasi silang dokumen, serta penyesuaian teknis terhadap dokumen yang telah disusun. Hal ini menjadi semakin menantang karena belum semua perangkat daerah (PD) memiliki prosedur atau SOP yang secara spesifik mendukung percepatan perizinan pengubahsuaian bangunan eksisting skala kecil. Di sisi lain, keterbatasan anggaran lintas sektor untuk mendukung kegiatan ini juga menghambat jalannya proses perizinan secara sistematis.

Kompleksitas persyaratan administrasi sertifikasi BGH, maka diperlukan sosialisasi dan edukasi intensif kepada pengguna bangunan pemerintah agar memahami proses perizinan PBG/SLF dan sertifikasi BGH. Untuk menjamin terbitnya sertifikat BGH tahap pemanfaatan, Dinas Cipta Karya Jawa Timur berkoordinasi dengan dinas Surabaya perizinan Kota secara berkesinambungan, melibatkan Sekretariat BGH Kementerian PUPR sejak perencanaan hingga pasca-pengubahsuaian, operasional serta mendapat pendampingan Kementerian ESDM pada tahap perencanaan.

Desain Pasif dan Aktif

Salah satu indikator kinerja BGH adalah efisiensi energi, yang dipengaruhi oleh desain pasif (orientasi, selubung, pencahayaan dan ventilasi alami) serta aktif (sistem HVAC dan pencahayaan buatan). Kedua pendekatan harus memenuhi standar teknis yang relevan. Gedung Cipta Karya Jawa Timur terdiri dari tiga massa bangunan terhubung: gedung utama empat lantai dan dua gedung sayap dua lantai. Selubung bangunan saat ini menggunakan ACP dan kaca sekeliling, dengan beberapa jendela bukaan manual serta horizontal blinds pada sisi timur dan barat. Sistem pengkondisian menggunakan AC split dengan pengaturan suhu 16-18°C. Orientasi bangunan kurang optimal karena sisi timur-barat hampir sama panjang dengan sisi utara-selatan.

Analisis kondisi eksisting dilakukan melalui:

- Perbandingan nilai OTTV bangunan eksisting dan bangunan hasil perencanaan pengubahsuaian;
- Survei persepsi pengguna (44 responden dari 50 kuesioner);
- Evaluasi Pelaporan Online Manajemen Energi (POME) tahun 2023–2024, dengan data hanya gedung utama 4 lantai; dan
- · Observasi langsung dan verifikasi data eksisting

Hasil perhitungan OTTV bangunan eksisting vs bangunan hasil perencanaan pengubahsuaian

Selubung bangunan berperan penting dalam efisiensi energi. Permen PUPR Nomor 21 Tahun 2021 mendefinisikan selubung sebagai elemen pembungkus bangunan yang menjadi media utama perpindahan panas, meliputi dinding luar, atap, bukaan, ventilasi, dan peneduh.

Efisiensi termal selubung diukur dengan parameter OTTV sesuai SNI 6389:2020. Semakin rendah nilai OTTV, semakin rendah beban pendinginan, sehingga meningkatkan kinerja indikator energi seperti IKE (kWh/m²/tahun) dan COP HVAC (≥4). Berdasarkan analisis, nilai OTTV ditunjukkan pada Tabel 2.

Seluruh nilai OTTV<35 W/m², sehingga masih memenuhi SNI 6389:2020. OTTV berfungsi sebagai indikator efektivitas desain selubung dalam meningkatkan efisiensi energi bangunan. Namun, McDiarmid et al., (2024) menekankan bahwa pengubahsuaian selubung sebaiknya diprioritaskan pada bangunan pra-1980, khususnya sebelum 1940, karena manfaatnya menurun pada bangunan yang lebih baru. Hal ini perlu divalidasi melalui survei kondisi ruang kerja eksisting berdasarkan persepsi pengguna.

Tabel 2 Perbandingan Nilai OTTV.

Massa Bangunan	Eksisting (W/m²)	Hasil Perencanaan Pengubahsuaian (W/m²)
Gedung Utama	20,18	21,74
Gedung Sayap Utara	23,11	20,57
Gedung Sayap Barat	32,69	14,30

Hasil Survei Persepsi Pengguna terhadap Kondisi Ruang Kerja Eksisting

Instrumen yang digunakan untuk mengukur persepsi pengguna bangunan adalah kuesioner skala Likert (1–5) dan pertanyaan terbuka, dengan pendekatan *mixed-methods sequential exploratory* (Creswell, 2018), di mana data kualitatif dianalisis lebih dahulu untuk merumuskan tema, yang kemudian dikonfirmasi secara kuantitatif. Tema yang muncul disajikan pada Tabel 3.

Temuan kualitatif menunjukkan bahwa pencahayaan alami, sirkulasi, dan kualitas udara merupakan aspek yang paling banyak dikeluhkan pengguna, dengan pencahayaan alami menempati proporsi tertinggi (50%) sebagaimana ditunjukkan pada Gambar 2. Hal ini mengindikasikan bahwa meskipun nilai OTTV bangunan eksisting masih sesuai SNI, standar kenyamanan belum terpenuhi.

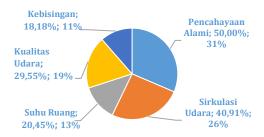
Faktor penyebabnya antara lain selubung bangunan eksisting yang hampir seluruhnya tertutup ACP, keberadaan massa bangunan yang saling menghalangi, penggunaan sistem AC *split*, serta belum optimalnya pemanfaatan cahaya dan ventilasi alami melalui penataan zonasi ruangan.

Tema-tema pada Tabel 3 kemudian dikonfirmasi melalui analisis kuantitatif dengan hasil skoring skala Likert pada lima indikator kenyamanan, sebagaimana dirangkum pada Tabel 4.

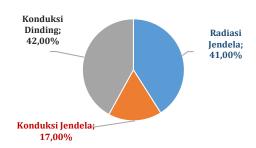
Rata-rata skor persepsi kenyamanan ruang kerja adalah pencahayaan (2,73), sirkulasi udara (2,67), suhu ruang (3,06), kebisingan (2,91), dan kualitas udara (3,28). Ketidaknyamanan paling konsisten terjadi pada pencahayaan dan sirkulasi udara, sedangkan suhu, kebisingan, dan kualitas udara lebih bervariasi,. Oleh karena itu memerlukan analisis lanjut berdasarkan zonasi ruang kerja. Setiap indikator memiliki standar deviasi 0,90–1,22, menunjukkan keragaman jawaban yang tinggi akibat perbedaan pengetahuan, kepedulian, jabatan, dan fungsi ruang.

Temuan ini konsisten dengan penelitian *Sleiman et al.* (2024) dan Maghsoudi Nia *et al.* (2024) yang menekankan pentingnya *occupant-centric* KPIs dalam mengevaluasi keberhasilan ubah suai, tidak hanya dari sisi efisiensi energi tetapi juga kenyamanan pengguna. Berdasarkan hasil tersebut, strategi pengubahsuaian yang diusulkan meliputi:

- Peningkatan sirkulasi udara alami dan sistem HVAC melalui penggantian AC split menjadi sistem VRF dengan kontrol suhu adaptif;
- Optimasi pencahayaan alami melalui redesain bukaan dan integrasi *shading* aktif-pasif;


 Pengendalian kebisingan eksternal melalui pemasangan panel akustik di ruang rapat dan penambahan vegetasi sebagai penyangga di sisi bangunan yang terpapar sumber bising.

Tabel 3 Temuan Kualitatif.


Tema Utama	Frekuensi Kemunculan	Kutipan Pernyataan
Pencahayaan alami kurang cukup	21 dari 44 responden	"Kurang terang, lampu sering menyala siang hari."
Sirkulasi udara kurang optimal	18 dari 44 responden	"Ruangan terasa pengap dan sirkulasi udara minim."
Suhu ruangan terlalu panas siang hari	9 dari 44	"AC tidak cukup kuat, ruang jadi panas."
Kualitas udara kurang baik	14 dari 44 responden	"Ruangan berdebu, bau tidak sedap dan rokok"
Kebisingan luar mengganggu	8 dari 44 responden	"Bising dari jalan cukup mengganggu konsentrasi."

Tabel 4 Skor Rata-Rata Persepsi Pengguna terhadap Kondisi Ruang Kerja Eksisting.

Pertanyaan	Indikator Kenyamanan	Skor Rata- Rata
Pencahayaan cukup terang pada siang hari	Pencahayaan	3,11
Jarang menyalakan lampu di siang hari	Pencahayaan	2,40
Sering silau akibat cahaya dari jendela	Pencahayaan	2,68
Udara dalam ruang terasa segar dan tidak pengap	Sirkulasi Udara	2,80
Sirkulasi udara alami berjalan baik	Sirkulasi Udara	2,53
Suhu ruang nyaman sepanjang hari kerja	Suhu Ruang	3,18
Ruangan terlalu dingin saat pagi hari	Suhu Ruang	2,95
Ruangan terlalu panas saat siang hari	Suhu Ruang	3,05
Suara dari luar mengganggu konsentrasi	Kebisingan	2,75
Dapat bekerja dengan tenang tanpa terganggu suara dari luar	Kebisingan	3,07
Tidak mengalami keluhan debu/sesak/udara kotor	Kualitas Udara	3,11
Ventilasi dan AC terasa nyaman	Kualitas Udara	3,45

Gambar 2 Persepsi Pengguna terhadap Kenyamanan Bangunan.

Gambar 3 Komposisi Kontributor OTTV Total Bangunan pada Gedung Cipta Karya Jawa Timur.

Gambar 4 Dokumentasi Audit Energi Internal (Sumber: Data Primer-2024).

Analisis Hasil POME

Data POME 2024 menunjukkan bahwa Gedung Cipta Karya Jawa Timur masih berada pada fase pre-BGH, dengan intensitas energi moderat-tinggi dan penerapan manajemen energi yang belum konsisten, meskipun telah menunjuk manajer energi. Dibandingkan POME 2023 (Tabel 5), terdapat perbaikan pada aspek dokumentasi, namun belum disertai peningkatan kinerja energi. Konsumsi listrik justru meningkat, sehingga menyebabkan pergeseran baseline, dan hingga kini belum terdapat program konservasi yang terukur.

POME tahun 2024 menunjukkan peningkatan kepatuhan manajemen energi (dari 2 menjadi 4 poin), namun disertai kenaikan konsumsi listrik, IKE, dan emisi GRK dibanding 2023. Defisit penghematan emisi membesar akibat penurunan signifikan pada baseline listrik.

Karena itu, peningkatan manajemen energi perlu segera diikuti implementasi nyata program konservasi agar efisiensi tidak berhenti pada aspek administratif. Beban listrik terbesar berasal dari sistem HVAC dan pencahayaan masing-masing terdiri atas 51 unit AC split dan 456 titik lampu yang dengan durasi operasi sekitar 50 jam per minggu menyumbang lebih dari 90% total konsumsi listrik.

Pengubahsuaian diharapkan dapat meningkatkan efisiensi energi bangunan. *Baseline* perencanaan menunjukkan kebutuhan daya listrik pascapengubahsuaian sebesar 197 kVA, meningkat dari kondisi eksisting 135,5 kVA. Meskipun demikian, melalui penerapan strategi pasif dan aktif, Gedung Cipta Karya diproyeksikan beroperasi lebih efisien sekaligus berkontribusi pada penurunan emisi GRK. Strategi prioritas pengubahsuaian mencakup:

- Mengganti seluruh AC split menjadi sistem HVAC jenis VRF-inverter (COP ≥ 4 dan set-point 24°C);
- 2) Meningkatkan performa selubung bangunan melalui insulasi atap, perbaikan *solar heat gain*, serta pemasangan fotovoltaik atap;
- 3) Mengonversi seluruh lampu ke LED hemat energi dan menambah sensor kendali;
- 4) Menggunakan peralatan listrik berlabel efisiensi; dan
- 5) Menerapkan *Building Automation System (BAS)* atau *System Monitoring Energy (SME)* untuk audit berkelanjutan.

Simulasi Hasil Perencanaan

Hasil perencanaan menunjukkan kombinasi intervensi desain pasif dan aktif sebagaimana dirangkum pada Tabel 6.

Untuk mengonfirmasi efektivitas rencana desain terhadap kondisi operasional, penelitian ini menggunakan hasil simulasi nilai OTTV dan cooling load pasca-pengubahsuaian yang diperoleh dari kegiatan pendampingan teknis oleh Institute for Natural Resources, Energy, and Environmental Management (IREEM) serta konsultan perencana dalam proyek pengubahsuaian Gedung Cipta Karya Jawa Timur. Hasil simulasi tersebut dianalisis lebih lanjut oleh penulis untuk menentukan strategi intervensi prioritas dan kebutuhan penyesuaian desain.

Tabel 7 menyajikan hasil simulasi nilai OTTV dan cooling load Gedung Cipta Karya Jawa Timur yang diperoleh dengan mengacu pada Permen PUPR Nomor 21 Tahun 2021 dan SNI 6389:2020, menggunakan perangkat lunak Hourly Analysis Program (HAP) E-20 sebagai alat analisis beban

pendinginan. Selanjutnya pada Gambar 3 dapat dilihat grafik visual yang menggambarkan komposisi kontributor terhadap nilai OTTV total bangunan Gedung Cipta Karya Jawa Timur.

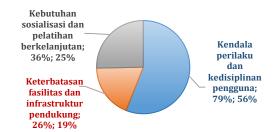
Berdasarkan hasil simulasi perhitungan OTTV dan cooling load Gedung Cipta Karya Jawa Timur, diperoleh nilai OTTV total gedung sebesar 33,9 W/m², masih di bawah batas maksimum SNI 6389:2020. Nilai ini menunjukkan bahwa pengubahsuaian desain selubung bangunan cukup efisien, meskipun masih dapat ditingkatkan melalui penggunaan jenis kaca *low-E* dan material berdaya serap panas rendah. Simulasi menunjukkan bahwa pemilihan jenis kaca yang tepat, seperti T-Sunlux atau Sunergy, dapat menurunkan OTTV hingga di bawah 30 W/m². Pada sistem pengkondisian udara, penggunaan HVAC tipe VRF dengan COP ≥4 juga terbukti menurunkan kebutuhan cooling load secara signifikan. Hasil ini memperkuat urgensi perlunya optimalisasi sistem selubung dan HVAC sebagai strategi utama pengubahsuaian, agar target pengurangan konsumsi energi sebesar ±25% dan penurunan emisi CO2 minimum 20% sesuai PP 16/2021 dapat tercapai.

Audit Energi Internal

Audit energi internal yang dilakukan pada Juli 2024 terhadap sistem pengkondisian udara dan pencahayaan Gedung Cipta Karya Jawa Timur menunjukkan bahwa sebagian besar unit AC Split masih diatur pada *set point* 16°C, serta tingkat pencahayaan di banyak ruang kerja berada di bawah standar minimum 250 lux sesuai SNI

6197:2020. Meskipun bangunan memiliki jendela kaca, pencahayaan alami belum optimal, sehingga ketergantungan terhadap pencahayaan buatan dan sistem pendingin tetap tinggi.

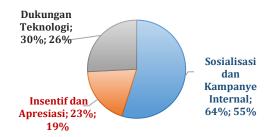
Temuan ini sejalan dengan survei persepsi pengguna, dimana 47% responden menilai ruang terlalu dingin dan 62% merasa pencahayaannya kurang nyaman. Secara teknis, simulasi OTTV menghasilkan nilai 33,9 W/m² sedikit di bawah ambang SNI, namun komposisi kontribusi terbesar berasal dari radiasi jendela (41%) dan konduksi dinding (42%). Ini menunjukkan bahwa sistem selubung masih menyumbang beban panas tinggi ke dalam ruang. Sementara itu, simulasi cooling mengonfirmasi bahwa kombinasi sistem HVAC COP ≥ 4 dan perbaikan selubung mampu menurunkan konsumsi ±25% (≈39 MWh) dan emisi GRK $\geq 20\%$ ($\approx 20.3 \text{ tCO}_2\text{e}$) per tahun.


Tantangan utama tahap perencanaan adalah merancang ulang desain pasif seperti kanopi pelindung, kaca *low-E*, dan pemanfaatan teras bangunan untuk meningkatkan pencahayaan alami tanpa menambah beban pendingin. Namun, opsi perencanaan dibatasi oleh alokasi anggaran konstruksi, sehingga diperlukan skala prioritas terhadap elemen bangunan yang akan diubah suai, pemilihan desain kanopi yang efisien secara biaya, serta bahan bangunan dan sistem pengendalian energi yang sesuai anggaran namun tetap optimal. Potret pengukuran pencahayaan dan suhu pada beberapa ruangan disajikan pada Gambar 4.

Tabel 5 Deviasi Indikator POME 2023 vs 2024 (Sumber: POME-2023 s.d 2024 (Gedung Utama)).

Indikator	2023	2024	Deviasi	Catatan
Konsumsi listrik	166.537 kWh	168.954 kWh	+1,4 %	Beban naik walau jam operasi sama (2.640 jam)
IKE aktual	78,48 kWh/m²	79,62 kWh/m²	+1,14 kWh/m²	IKE bangunan ≤ 5.000 m² dikatakan efisien jika nilainya 70 ≤ IKE < 99 kWh/m²/tahun menurut Permen ESDM No 3 Tahun 2025
Emisi tahunan	155,56 t CO₂e	157,81 t CO₂e	+1,5 %	Faktor emisi 0,236 t/GJ digunakan di kedua tahun
"Penghematan" vs baseline	–57,9 tCO₂e	–64,1 tCO₂e	Defisit lebih besar (+6,2 tCO ₂ e)	Konsumsi > <i>baseline</i> menunjukkan <i>negative saving</i>
Baseline listrik	157.962 kWh	145.049 kWh	-8,2 %	2024- <i>baseline</i> direvisi (hanya 2022) menunjukkan kurang konsisten
Kepatuhan 5 poin manajemen energi	2 dari 5 poin (poin 1 dan 5)	4 dari 5 poin (poin 1, 2, 3, 5)	+2 poin	Ada kebijakan dan manajer energi bersertifikat tahun 2024
Kegiatan konservasi energi	0	0	-	Belum ada audit maupun <i>retrofit</i> fisik

Tabel 6 Rencana Desain Pengubahsuaian BGH Gedung Cipta Karya Jawa Timur.


Intervensi	Efek Energi
Pengubahsuaian	
Pelepasan ACP dan sunscreen	Meningkatkan pencahayaan alami dan ventilasi silang
Penambahan kanopi sekeliling	Menurunkan solar heat gain dan beban pendinginan
Aktivasi kembali teras keliling	Menambah naungan alami dan sirkulasi udara
Penggunaan kaca <i>low-E</i>	Mengurangi radiasi termal dan meningkatkan efisiensi selubung
HVAC VRF + VAV	Menyesuaikan kapasitas pendinginan per zona dan meningkatkan COP sistem
Pemasangan panel surya di atap gedung utama (minimal 30% dari luas atap) sesuai Surat Edaran Gubernur Jawa Timur No. 671/630/124.5/2022 Tentang Implementasi Pemasangan Pembangkit Listrik Tenaga Surya (PLTS) Atap pada Gedung Pemerintah dan Swasta	Mengurangi penggunaan energi
Implementasi <i>Power Monitoring Expert</i> (PME), belum sampai BAS, karena menyesuaikan ketersediaan anggaran konstruksi pengubahsuaian	Memantau dan menganalisis konsumsi energi secara real-time atau berdasarkan periode waktu tertentu, sehingga dapat mengidentifikasi area yang boros energi, serta mengoptimalkan penggunaan energi

Gambar 5 Hambatan Praktik Efisiensi Manual.

Tabel 7 Hasil Simulasi OTTV dan *Cooling Load* Pengubahsuaian Gedung Cipta Karya Jawa Timur (Sumber: IREEM-2025).

Komponen Evaluasi	Hasil Simulasi	Keterangan
Nilai OTTV total	33,9 W/m²	Sesuai batas SNI 6389:2020 (maks. 35 W/m²)
Radiasi melalui jendela	7.305,92 W	Kontribusi signifikan terhadap OTTV
Konduksi panas jendela	3.086,05 W	Dipengaruhi oleh jenis kaca
Konduksi panas dinding	7.433,00 W	Disesuaikan melalui insulasi dan pelindung luar
Total luas fasad	643,01 m ²	Digunakan untuk menghitung OTTV
Jenis kaca	T-Sunlux	Memberikan
OTTV	Blue Green	performa termal
terendah	(27,7 W/m²)	terbaik
Simulasi	Diturunkan	Disesuaikan
cooling load	dengan	berdasarkan zona
	kaca <i>low-E</i>	dan skenario COP
	& HVAC efisien	≥4
Target	± 25% (≈ 39	Sesuai ambang
pengurangan	MWh/tahu	batas kinerja
IKE	n)	energi BGH tahap pemanfaatan
Target	≥20% (≈ 20,3	Selaras dengan
reduksi emisi	tCO₂e/tahun)	ketentuan PP No.
GRK		16 Tahun 2021
Rekomendasi	Kaca <i>low-E</i> ,	Prioritas intervensi
utama	insulasi	dalam
	atap, HVAC	pengubahsuaian
	COP ≥4	desain pasif dan aktif
		akui

Gambar 6 Saran Peningkatan Partisipasi.

Target Capaian Penilaian Kinerja BGH Tahap Pemanfaatan

Untuk memperoleh sertifikasi BGH tahap pemanfaatan melalui jalur pengubahsuaian, Cipta Karya Provinsi Jawa Timur memulai proses perencanaan pengubahsuaian pada tahun 2024, dilanjutkan dengan konstruksi pada tahun 2025, dan ditargetkan mulai beroperasi pada awal 2026. Dalam rangka meraih sertifikat peringkat Madya, disusun target klaim penilaian kinerja BGH sesuai daftar simak yang tertuang dalam Surat Edaran Menteri PUPR No. 01/SE/M/2022. Penilaian kinerja BGH tahap pemanfaatan untuk bangunan eksisting mencakup empat parameter utama dengan total poin maksimal 165, yaitu:

- A. Organisasi dan Tata Kelola BGH (6 kriteria; 83 poin),
- B. Proses Konstruksi Pengubahsuaian (2 kriteria; 26 poin),
- C. Pemeliharaan Kinerja BGH pada Masa Pemanfaatan (6 kriteria; 50 poin), dan
- D. Peran Pengguna Gedung (3 kriteria; 6 poin).

Target pencapaian nilai direncanakan berasal dari:

- 1) Parameter A: ditargetkan meraih 42 poin melalui kriteria Perencanaan Pengubahsuaian untuk Penyesuaian Kinerja;
- 2) Parameter B: ditargetkan 13 poin dari Laporan Pelaksanaan Pengubahsuaian;
- 3) Parameter C: ditargetkan 16 poin untuk Efisiensi Penggunaan Energi dan 10 poin untuk Efisiensi Penggunaan Air; dan
- 4) Parameter D: ditargetkan meraih poin maksimal.

Pada 2024, setelah perencanaan selesai, diperoleh klaim sementara sebesar 45 poin dari kriteria "perencanaan pengubahsuaian untuk penyesuaian kinerja", meningkat 3 poin dari rencana awal. Nilai ini akan diverifikasi oleh TPA BGH saat proses sertifikasi setelah gedung beroperasi.

Aspek Perilaku Pengguna Bangunan Gedung

Pengubahsuaian Gedung Cipta Karya Jawa Timur untuk sertifikasi BGH mencakup intervensi fisik dan perubahan perilaku pengguna. Keterbatasan anggaran menuntut penetapan prioritas, sehingga hasil perencanaan memutuskan pengendalian efisiensi energi dilakukan melalui sistem pemantauan energi tanpa integrasi building automation system. Sistem ini menyajikan data konsumsi daya secara waktu nyata dan mendukung evaluasi operasional, namun belum memungkinkan pengendalian otomatis, sehingga partisipasi pengguna menjadi faktor kunci dalam menjaga kinerja energi pasca-pengubahsuaian.

Pengukuran tingkat partisipasi pengguna bangunan menggunakan pendekatan *mixed-methods sequential exploratory* (Creswell, 2018), diawali dengan eksplorasi kualitatif dan dilanjutkan survei kuantitatif.

Survei melibatkan 53 responden dengan sembilan pernyataan tertutup (skala Likert 1-5) dan dua pertanyaan terbuka. Analisis tematik dari pertanyaan terbuka menghasilkan dua kategori utama, yaitu hambatan praktik efisiensi manual peningkatan partisipasi mendukung efisiensi, yang masing-masing kategori memberikan tiga tema, sebagaimana disajikan pada Tabel 8, Gambar 5 dan 6. Hambatan terbesar menurut persepsi pengguna terletak pada aspek perilaku dan kedisiplinan, dengan persentase sebesar 79%. Menurut persepsi pengguna bangunan, saran terbanyak untuk meningkatkan partisipasi dalam pengendalian efisiensi secara manual terletak pada aspek sosialisasi dan kampanye internal, dengan persentase sebesar 64%.

Selanjutnya, hasil analisis kuantitatif kuesioner skala Likert 1-5 terhadap 53 responden menunjukkan skor partisipasi tinggi pada hampir seluruh indikator (Tabel 9).

Tabel 8 Analisis Tematik.

	. • 1111011010 1 011	
Kategori	Frekuensi	Kutipan
Utama/Tema	Kemunculan	Pernyataan
1. Hambatan dala	am menjalankan e	efisiensi secara
manual		
Kedisiplinan	79%	"Kepatuhan, dan
dan Kebiasaan		kontinuitas
Pengguna		efisiensi
		diragukan"
Fasilitas dan	26%	"Kurangnya
Infrastruktur		fasilitas yang
yang Terbatas		memadai,
		sehingga
		kesulitan untuk
		melakukannya"
Sosialisasi dan	36%	"Keterbatasan
Edukasi Kurang		pengetahuan
		teknis"
2. Saran untuk m	eningkatkan parti	isipasi pengguna
Sosialisasi dan	64%	"Edukasi dan
Kampanye		sosialisasi rutin
Internal		kepada seluruh
		pengguna"
Insentif dan	23%	"Pemberian
Apresiasi		insentif atau
		penghargaan
		bagi yang
		berkontribusi
		aktif"
Dukungan	30%	"Pemanfaatan
Teknologi		teknologi
		pendukung
		untuk efisiensi
		dan kemudahan"

Tabel 9 Skor Rata-Rata Partisipasi Pengguna Terhadap Efisiensi Manual.

*		
Pertanyaan	Indikator Partisipasi	Skor Rata - rata
Bersedia mematikan lampu saat tidak digunakan	Efisiensi Energi	4,47
Bersedia menaikkan suhu AC (misalnya ke 24°C) untuk menghemat energi	Efisiensi Energi	4,09
Bersedia membuka jendela sebagai pengganti penggunaan AC bila kondisi memungkinkan	Efisiensi Energi	4,00
Bersedia menggunakan air seperlunya saat mencuci tangan atau membersihkan ruangan	Efisiensi Air	4,51
Bersedia melaporkan kebocoran atau kerusakan instalasi air kepada pengelola	Efisiensi Air	4,58
Bersedia memilah sampah kering dan basah sesuai tempat yang disediakan	Pengelolaan Sampah	4,47
Bersedia membawa kembali sampah pribadi (kemasan makanan/minuman) untuk mengurangi beban gedung	Pengelolaan Sampah	4,02
Bersedia mendukung Gerakan Tanpa Plastik Sekali Pakai, dengan membawa tempat makan, sendok dan tempat minum yang bukan berbahan plastik	Perilaku Hijau	4,25
Bersedia mengikuti pelatihan singkat mengenai pengelolaan energi, air, dan sampah di kantor	Penguatan Kapasitas SDM di Lingkungan Kerja	4,23

Hal ini mencerminkan sikap positif pengguna terhadap efisiensi energi, air, dan pengelolaan sampah, serta potensi keterlibatan yang kuat meskipun tanpa dukungan otomatisasi. Rata-rata skor partisipasi berada di atas 4,00, dan nilai standar deviasi 0,53–0,92, yang mengindikasikan persepsi responden relatif konsisten dengan variasi sedang. Perbedaan ini kemungkinan dipengaruhi oleh peran, fungsi ruang, atau tingkat keterlibatan pengguna dalam operasional gedung.

Temuan ini menjadi dasar pengembangan strategi occupant-centric untuk menjaga kinerja pascapengubahsuaian, terutama di gedung yang belum dilengkapi sistem otomatisasi canggih. Strategi

Tabel 10 Strategi Occupant-Centric.

Area	Temuan Rata- rata	Strategi
Energi	Mematikan lampu (4.47), menaikkan suhu AC (4.09), buka jendela (4.00)	 Pasang pengingat visual di dekat saklar/AC Gunakan sensor lampu otomatis di area umum Edukasi soal kenyamanan termal
Air	Hemat air (4.51), lapor kebocoran (4.58)	 Sistem pelaporan digital (mis. QR code) Audit ringan berkala oleh penghuni
Sampah	Pilah sampah (4.47), bawa kembali sampah pribadi (4.02)	 Fasilitasi tempat sampah terpilah yang mudah diakses Kampanye "Zero Waste Desk" mingguan
Penguatan Kapasitas SDM	Kesediaan ikut pelatihan (4.23)	 Workshop ringan per triwulan penghargaan untuk partisipan aktif
Perilaku Hijau	Dukung gerakan tanpa plastik sekali pakai (4.25)	 Hari Tanpa Plastik bulanan Fasilitasi peralatan makan ramah lingkungan

tersebut disusun berdasarkan skor tertinggi per area (Tabel 10).

Strategi perilaku ini diperkuat dengan pengingat visual, sistem pelaporan berbasis QR *code*, serta penyediaan fasilitas pendukung seperti tempat sampah terpilah dan ventilasi silang. Kesediaan mengikuti pelatihan dan mendukung gerakan lingkungan menunjukkan potensi pembentukan komunitas hemat energi internal sebagai agen perubahan.

Pendekatan occupant-centric dinilai efektif menjaga kinerja energi pasca-pengubahsuaian tanpa ketergantungan penuh pada sistem otomatisasi. Strategi ini relevan diterapkan pada gedung pemerintahan atau fasilitas publik dengan keterbatasan anggaran, serta dapat menjadi model bagi kebijakan pengubahsuaian berkelanjutan berbasis perilaku.

Untuk mendukungnya, kebijakan manajemen energi perlu diterapkan secara konsisten dengan dukungan pimpinan organisasi, sebagaimana dirangkum pada Tabel 11.

Implementasi kebijakan manajemen energi ini memerlukan komitmen dari pimpinan tertinggi organisasi agar perilaku hemat energi dan ramah lingkungan menjadi budaya kerja berkelanjutan.

Tabel 11 Kebijakan Manajemen Energi

Kebijakan	Tindak Lanjut
Integrasi Pelibatan	Strategi pengubahsuaian tidak
Pengguna dalam	hanya perlu menargetkan
Perencanaan	efisiensi teknis (HVAC,
Pengubahsuaian	pencahayaan, selubung),
BGH sampai dengan	tetapi juga mencakup
Pasca-	program perubahan perilaku
Pengubahsuaian	penghuni melalui edukasi,
-	pelatihan, dan komunikasi
	berkelanjutan.
Penyusunan	Dibutuhkan pedoman internal
Protokol Efisiensi	(SOP) tentang praktik efisiensi
Manual yang	manual, yang disesuaikan
Berbasis Perilaku	dengan jam kerja, tata letak
	ruang, serta profil okupansi.
	Pedoman ini dapat disertai
	reminder visual dan pelaporan
	berkala.
Pembentukan Tim	Pegawai yang memiliki minat
Internal "Agen	dan pengetahuan dalam
Perubahan"	efisiensi energi dan
	lingkungan dapat difasilitasi
	untuk menjadi penggerak
	budaya hemat energi di
5 . 0 .	lingkungan kantor.
Penguatan Sistem	Partisipasi manual dapat
Penghargaan dan Pengakuan	ditingkatkan melalui insentif non-finansial, seperti
Peligakuali	penghargaan bulanan untuk
	tim dengan efisiensi terbaik,
	atau program kampanye
	efisiensi antar bidang.
Perluasan Kebijakan	Dukungan regulasi yang lebih
Sertifikasi BGH ke	responsif terhadap bangunan
Bangunan <5.000	pemerintah kecil, baik dari sisi
m ²	administrasi perizinan, teknis,
•••	•
	rendah karbon.
	maupun sosial-budaya dalam mewujudkan bangunan rendah karbon.

KESIMPULAN

Proses sertifikasi BGH tahap pemanfaatan pada bangunan eksisting, seperti Gedung Cipta Karya Jawa Timur, memerlukan kesiapan dari aspek administratif, teknis, dan perilaku pengguna. Kurangnya pemahaman mengenai proses perizinan, kebutuhan biaya untuk menyusun dokumen persyaratan perizinan, serta jenis dokumen yang perlu dilengkapi mengindikasikan perlunya sosialisasi dan edukasi intensif bagi pengguna bangunan pemerintah agar memahami proses perizinan PBG/SLF dan sertifikasi BGH.

Secara teknis, perencanaan pengubahsuaian memenuhi nilai OTTV sesuai SNI dan menunjukkan potensi penghematan energi sekitar 25% serta reduksi emisi lebih dari 20%. Ditinjau dari sisi perilaku, partisipasi pengguna terhadap efisiensi manual tergolong tinggi, menandakan potensi dukungan kuat terhadap pengelolaan energi, meskipun tanpa sistem otomatisasi.

Keberhasilan sertifikasi BGH ditentukan tidak hanya oleh intervensi teknis, tetapi juga oleh kelengkapan administratif serta keterlibatan aktif pengguna. Oleh karena itu, diperlukan kebijakan manajemen energi berbasis perilaku (occupantcentric) dan dukungan regulasi yang memfasilitasi sertifikasi BGH pada bangunan pemerintah berskala kecil.

Rekomendasi

Sertifikasi BGH dapat menjadi instrumen untuk mendorong kelengkapan perizinan bangunan secara lebih tertib. Namun, kompleksitas proses perizinan dan tingginya biaya pengubahsuaian menjadi hambatan, terutama bagi gedung pemerintah dengan luas di bawah 5.000 m². Diperlukan fasilitasi dan insentif khusus untuk memperluas implementasinya.

Ditinjau dari aspek teknis, diperlukan uji coba pada pengubahsuaian bangunan desain berukuran < 5.000 m^2 pemerintah untuk menemukan pendekatan yang mampu memenuhi standar teknis BGH secara efisien. Fokus uji coba diarahkan pada kombinasi desain pasif dan aktif, termasuk pemilihan material yang hemat energi namun terjangkau, agar tetap menjamin kinerja energi dan kenyamanan pengguna dalam keterbatasan anggaran.

Selain itu, pengukuran partisipasi pengguna sebaiknya disesuaikan dengan zona ruang kerja dan tingkat pemahaman terhadap efisiensi energi, guna memperoleh data yang lebih representatif dan dapat dijadikan dasar kebijakan manajemen energi berbasis perilaku.

UCAPAN TERIMA KASIH

Terima kasih kepada Bapak I Nyoman Gunadi, S.T., M.T. dan Bapak Wawan Cahyoko, S.T., M.T. atas kesempatan yang diberikan untuk mengikuti pelatihan Bangunan Gedung Hijau dan Konservasi Energi. Ucapan terima kasih juga ditujukan kepada

rekan-rekan Beni, Hemawan, Cayza, Brian, Fajri, Syukur, Dimas, dan Aisyah atas bantuan dalam pengumpulan data. Penghargaan kami sampaikan kepada Sekretariat Bangunan Gedung Hijau Kementerian PUPR, Kementerian ESDM, serta IREEM dan tim konsultan perencana atas pendampingan serta dukungan teknis dalam penelitian ini. Data simulasi disadur dari Tim IREEM dalam proyek Integrated Energy Efficiency Programmes for Indonesia's Building Sector Decarbonization (INTENS), INDONESIA - UK PACT.

DAFTAR PUSTAKA

- Ator, W. T., Damayanti, E., Rohman, M. N., & Husin, A. E. (2024). Sustainability assessment with the green retrofitting concept for building: A case study in the Gresik Regency, Indonesia. Journal of Infrastructure Planning and Design, 8(12), 1–15.
- Badan Standardisasi Nasional. (2020). Standar Nasional Indonesia (SNI) 6389:2020 Tentang Konservasi Energi untuk Selubung Bangunan Gedung.
- Badan Standardisasi Nasional. (2020). Standar Nasional Indonesia (SNI) 6197:2020 Tentang Konservasi Energi pada Sistem Pencahayaan.
- Bielig, M., Kacperski, C., & Kutzner, F. (2024). *Increasing retrofit device adoption in social housing: Evidence from two field experiments in Belgium.* Journal of Environmental Psychology, 95, 102284.
- https://doi.org/10.1016/j.jenvp.2024.102284
 BPIW Kementerian Pekerjaan Umum. (2024).
 Strategi pengembangan infrastruktur
 mendukung pengarusutamaan perubahan
 iklim. https://bpiw.pu.go.id/artikel/strategipengembangan-infrastruktur-mendukungpengarusutamaan-perubahan-iklim
- Brambilla, A., Salvalai, G., Imperadori, M., & Sesana, M. M. (2018). Nearly zero energy building renovation: From energy efficiency to environmental efficiency a pilot case study. Energy and Buildings, 166, 205–216. https://doi.org/10.1016/j.enbuild.2018.02.00
- Cozza, C., Aste, N., Silva, C., & Leonforte, F. (2021). Impact of measurement uncertainty on building modeling and retrofitting decisions. Frontiers in Built Environment, 7, 675913.
 - https://doi.org/10.3389/fbuil.2021.675913
- Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
- Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

- (Chapters9).
- https://www.ipcc.ch/report/ar6/wg3/chapte r/chapter-9/
- Kementerian Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia. (2022). Surat Edaran Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 01/SE/M/2022 Tentang Petunjuk Teknis Penilaian Kinerja Bangunan Gedung Hijau
- Maghsoudi Nia, E., Qian, Q. K., & Visscher, H. J. (2024). Occupants' inquiries for energy efficiency retrofitting in the Netherlands. Energy and Buildings, 308, 113990. https://doi.org/10.1016/j.enbuild.2024.1139
- McDiarmid, H., Septien, A. B., & Parker, P. (2024). Achieving rapid decarbonisation of Canada's residential sector requires a strategic approach. Energy and Buildings, 308, 113999. https://doi.org/10.1016/j.enbuild.2024.1139
- Peraturan Pemerintah Republik Indonesia Nomor 16 Tahun 2021 Tentang Peraturan Pelaksanaan Undang-Undang Nomor 28 Tahun 2002 tentang Bangunan Gedung. (2002).
- Pemerintah Republik Indonesia. (2021). Peraturan Pemerintah Republik Indonesia Nomor 16 Tahun 2021 tentang Peraturan Pelaksanaan Undang-Undang Nomor 28 Tahun 2002 tentang Bangunan Gedung.
- Kementerian Lingkungan Hidup Republik Indonesia. (2010). Peraturan Menteri Negara Lingkungan Hidup Republik Indonesia Nomor 14 Tahun 2010 tentang dokumen lingkungan hidup bagi usaha dan/atau kegiatan yang telah memiliki izin usaha dan/atau kegiatan tetapi belum memiliki dokumen lingkungan hidup
- Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. (2021). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor 4 Tahun 2021 tentang daftar usaha dan/atau kegiatan yang wajib memiliki analisis mengenai dampak lingkungan hidup, upaya pengelolaan lingkungan hidup dan upaya pemantauan lingkungan hidup atau surat pernyataan kesanggupan pengelolaan dan pemantauan lingkungan hidup.
- Kementerian Perhubungan Republik Indonesia. (2021). Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 17 Tahun 2021 tentang penyelenggaraan analisis dampak lalu lintas.
- Kementerian Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia. (2021). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia Nomor 21 Tahun 2021 tentang penilaian kinerja penyelenggaraan penataan bangunan dan lingkungan.

- Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. (2025). Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 3 Tahun 2025 tentang konservasi energi oleh pemerintah dan pemerintah daerah.
- Pemerintah Kota Surabaya. (2023). Peraturan Daerah Kota Surabaya Nomor 7 Tahun 2023 tentang pajak daerah dan retribusi daerah.
- Prasetyawan, S., Machfudiyanto, R. A., & Rachmawati, T. S. N. (2023). *Incentives and barriers to green building implementation: The case of Jakarta*. Journal of Civil Engineering Forum, 9(1), 115–124.

https://doi.org/10.22146/jcef.74739

- Sleiman, S., Ouf, M., Luo, W., Kramer, R., Zeiler, W., Borkowski, E., Hong, T., Nagy, Z., & Chen, Z. (2024). Overview of occupant-centric KPIs for building performance and their value to various building stakeholders. Energy and Buildings, 322, 114704.
 - https://doi.org/10.1016/j.enbuild.2024.1147

- Wang, T. (2022). Estimating the carbon emission of construction waste recycling using grey model and life cycle assessment: A case study of Shanghai. International Journal of Environmental Research and Public Health, 19(14), 8507
 - https://doi.org/10.3390/ijerph19148507Wor ld Economic Forum. (2024). Retrofitted buildings are key to the energy transition: 5 ways to unlock progress.
 - https://www.weforum.org/stories/2024/01/retrofitted-buildings-energy-transition
- Xiang, X., Zhang, Y., Li, S., & Chen, H. (2024). Monitoring the carbon emissions transition of global building end-use activity. arXiv Preprint, arXiv:2405.13327.

https://arxiv.org/abs/2405.13327

Zanetti, E., Scoccia, R., Aprile, M., Motta, M., Mazzarella, L., & Zaglio, M. (2019). Building HVAC retrofitting using a PV-assisted DC heat pump coupled with a PCM heat battery and optimal control algorithm. In E3S Web of Conferences, CLIMA 2019 (Vol. 171, Article 04041).

https://doi.org/10.1051/e3sconf/201917104 041